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AbslracL Using a transfermatrix technique we obain ertended =eris apnrion of the 
percolalion probability for Ule directed site percolation problem on the square lattice. 
Our approach meals  a pmiously unsuspected mnnection between this problem and 
the enumeration of the number of ways of dissecting a ball. We show that the method 
can also be used 10 determine a series expansion for the mean cluster size. An analysis 
based on Pad6 approximants gives estimates of the critical threshold and also of the 
critical exponent p. 

1. Introduction 

Percolation theory has a fundamental role in the study of geometric phase transitions. 
Since it was proposed in its bond (Broadbent and Hammersley 1957) and sife (Domb 
1959) versions a huge number of techniques have been used in order to increase 

the transfermatrix technique and various types of calculations spawned by the 
renormalization group theory (Stauffer 1985). 

Directed percolation is an anisotropic mriant of percolation in which the lattice 
is now oriented. Acyclic (cyclic) orientation leads to a different (same) universality 
class from undirected percolation (Blease 1977). 

Directed percolation has many possible applications and realizations including 
crack propagation (Kertksz and Wcsek 1980), epidemics with a bias (Grassberger 
1985), galactic evolution (Schulman and Seiden 1982) and resistor-diode networks 
(Redner and Brown 1981). Moreover, it can also be associated to Reggeon 
field theory (Grassberger and Sundermeyer 1978, Cardy and Sugar 1980), collapse 
transition for branched polymers (Dhar 1987) and vicious random walkers 
(Arrowsmith ef a1 1991). Recently a number of results have been obtained for directed 
percolation regarding, e.g., the fractal dimension at threshold (Hede er a1 1991), 
Kasteleyn-Fortuin formulae for a chiral Potts model (Arrowsmith and Essam 1990), a 
new scaling mechanism for the longitudinal correlation length (Henkel and Privman 
1991), conversion site-to-bond method (Duarte 1990), mean-field renormalization 
group (Neves and Leal da Silva 1991), transfermatrix methods (ben-Avraham er al 
1991), series techniques (Onody 1990, Ruskin and Cadilhe 1991) and self-organized 
criticality (Obukhov 1990). 

Focusing our attention on series expansion methods we note that for the pair 
connectedness moments (low density expansions) very long series are now available 
(Essam el a1 1988) for both site and bond percolation on the directed square 
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and triangular lattices. However, for the corresponding series expansion of the 
percolation probability (high density expansion) the status b not the same and only 
for the directed bond percolation some recent improvements were made (Baxter and 
Guttmann 1988, Onody 1990). In fact, for the site percolation defined on the directed 
square lattice, the longest previously published series has remained the ten-term series 
of De’Bell and Essam (1983). In this paper, using a transfer-matrix method, we extend 
the known series for the percolation probability to 16 terms. 

This paper is organized as follows. In section 2 we present the transfer-matrix 
method we have used to get the series expansion of the percolation probability to 
order 15. In section 3 we establish a connection between this expansion and the 
number of dissections of a ball. This connection allows us to increment the series by 
one more term. We also show how the mean cluster size can be obtained using the 
same transfer-matrix scheme. A Pad& approximant analysis of the series is used in 
section 4 to estimate the percolation threshold qe and the critical exponent p. We 
conciude the paper with a snort summaty. 

R N Onody and U P  C Neves 

2. The transfer-matrix method 

Consider a square lattice drawn diagonally as in figure 1. Sites are independently 
present with probability p and absent with probability q = I - p and the edges of the 
lattice are oriented as shown in the figure 1 (acyclic orientation). 

The order parameter for this system is the percolation probability P ( q ) ,  i.e. the 
probability that the origin 0 belongs to an infinite cluster. 

As p approaches its critical value p ,  from above, P( p) goes to Zero according to 
the power law 

P(P)  - ( P  - P , ) @  (2.1) 

where p is the critical exponent. 
For this quantity the longest existent series was evaluated through the enumeration 

of a lattice animal generating program (De’Bell and Essam 1983). We shall use a 
transfer-matrix approach that stores information from one row to the next. 

Let us denote an occupied site by 1, an empty site by 0 and one configuration (Of 
the 2N allowed) of the N sites living in the row N by { a ) N  = {a,, a2,. . . , a ~ }  
with ai being 0 or 1 and corresponding to the state of occupation of the i tb site Of 
that row. Let P({a) , )  be the probability of occurrence of such a configuration. 

For the second row we have explicitly P( { 1 , l ) )  = p 2 ,  P( { 1 , O ) )  = P( {O, 1)) = 
pq and P({O,O)) = 0 (remember that the origin is always occupied and that the 

ii; A 
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Figure 1. Acyclic orientation of lhe q u a r e  laltice. me origin is always occupied and 
we have labelled the mws as used in the text. 
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configuration { O , O )  is forbidden since it interrupts the cluster). We store the four 
configurations in a 4 x 3 matrix reserving one line for each configuration and with the 
columns keeping the coefficients of the corresponding polynomial in the variable q. 
Summing over all configurations we have 

Now using this information retained up to row 2, we can formulate a procedure 
that enable us to get aN configurations probabilities P( { a),) of row 3. The rules are 
the following. 

(i) Consider a configuration of row 3, say { 1,0,0). 
(ii) Match this with all compatible configurations of row 2. By a compatible 

configuration we mean one configuration of the second row that allows all the 
occupied sites of the third row being connected to the origin. In other words, every 
occupied site of row 3 musf have at least one occupied nearest neighbour at row 2. 
This preserves the concept that a site only belongs to the directed cluster if and only 
if it is connected to the origin. 

(iii) For each compatible configuration of row 2 multiply the corresponding 
probability by a factor pmqn where m is the number of occupied sites and n is the 
number of perimeter sites (i.e. aN empty sites of the row 3 with at least one occupied 
nearest-neighbour site in row 2) of the third row. Summing over all compatible 
configurations, 

P(tL0,OI) = PPZP({L11) + P 4 P ( { L O I ) .  (2.3) 

(iv) Doing the Same thing for all configurations of the third row, we can then 
store these probabilities in a matrix Z3 x 6 in the same way that we did with the 
second row. 

It is easy to obtain 

P3(q) = P ( { a ) 3 )  = 1 - 42 - 3q3 + 4q4 - q 5 .  (2.4) 
{all 

Proceeding in the same way we can get P( { a ) N )  and P N ( q )  for N = 4 , 5 , .  . . . 
We wote a FORTRAN program to execute the rules above up  to row N = 15 

keeping the polynomials up to order q16 (the reason for this will become clear in the 
next section). It took 36 CPU hours in our CONVEX. 

For a finite lattice of N rows we have 

For q < qs we expect that 

P ( q )  = lim P N ( q ) .  (2.6) N-03 

In fact we can take this as a more precise definition of P(q) .  
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Analysing these polynomials we observe that in going from row N to row 
N + 1 leaves the coefficient of 1, q, q2,. . . , qN unchanged such that the percolation 
probability can be written 

m .. 
N P ( q )  = pm = a N N q  . 

N=l  

In this way, we have the series expansion 

P(q) = 1 - q2 - 3q3 - 8q4 - 21q5 - 56q6 - 154q7 - 434q' - 1252q' - 3675q'" 

- 10954q" - 33M4qI2 - 100676q'3 - 309569qI4 - 957424qI5 . . . . 
(2.8) 

3. Dissections of a ball 

Through the analysis of the coefficients aNm of (2.6) or, more precisely, through 
analysis of the differences we have found the following amazing 
integer sequence: 1, 3, 12, 55, 273, 1428, 7752, 43 263, 246 675, etc. This sequence is 
exactly an enumeration problem of ball dissections! (See Beineke and Pippert 1971, 
Sloane 1973.) 

The problem of dissections was first formulated by Euler as the number of ways 
of dissecting a convex polygon of n + 2 sides into n triangles. This question leads to 
the Catalan numbers C, = (2n)! /n! (n  + l ) !  (n 2 1). Such numbers have already 
appeared in the context of directed bond percolation (Baxter and Guttmann 1988). 
Smce the boundary of a polygon is homeomorphic to a circle, such a triangulation can 
be considered as a dissection of a disc and therefore it is a two-dimensional problem. 
The three-dimensional analogue corresponds to dissections of a ball. 

Let D 3 ( n )  be the number of ways of inserting n - 4 sheets through a ball having 
n vertices on its surface in such a way that each sheet contains precisely three of the 
vertices and so that pairs of sheets meet only on surface curves joining vertices. This 
problem was solved by Beineke and Pippert (1971): 

(3n - 9)! 
D3(n) = ( n  - 3)!(2n - 5)! 

for n 2 3. 
Tbrning back to our sequence we can identify 

( 3 N ) !  
~ N , N + I  - ~ N + ~ . N + I  = 4 ( N  + 3) = ( N ) ! ( 2 N  + l)! ' 

That is the reason we have kept the polynomial P15(q)  up to order q16. We have 
= 11 121 767818 and using (3.2) we can find 

a16,16 = -2987846 (3.3) 

incrementing the percolation probability by one more term. 
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Although we have found the link between the directed site problem and the 
dissection problem, we don't know its origin. It would be very interesting if one 
could demonstrate (3.2). 

lb close this section let us show how the method we have developed so far can 
also be used to obtain the mean cluster size series S N ( p )  (low density series). It 
is necessary to incorporate, in each row, its site content. Thus, in a row m, we 
multiply each configuration probability P({a),) by the number of occupied sites 
of his configuration and sum over UN possible configurations to get a partial sum 
S( m, p ) .  Up to IUW N the mean cluster size will be given by 

N 

s N ( P )  = S ( m , p )  (3.4) 
m = l  

which gives the correct answer to order pN- '  (that is, in going to rows 
polynomial coefficients up to order N - 1 will no longer change). 

We can easily calculate by hand the first few partial sums. For example 

N the 

S ( 1 , p )  = 1 S ( 2 , p )  = 2 p  S ( 3 , p )  = - p 3 + 4 p z  S ( 4 , p )  = - 4 p 4 + 8 p 3  

giving 

S,( p )  = 1 + 2 p  + 4PZ + 7 P 3  - 4P4 (3.5) 

which it is correct to order p3.  
Although it was amusing to see that our method works equally well for both 

low and high density series expansion, our results for the mean cluster size do not 
compete with the previous one based on a Dyson-type equation (Essam ef al 1988). 
Indeed they are very different from these as long as we do not go beyond N = 15. 

4. Analysis d series 

Order parameter series are usually well suited to analysis by Dlog Pad6 approximants. 
Accordingly, we show in table 1 the standard Dlog Pad6 approximants for the 
percolation probabilities series. 

Tabk 1. Dlog Pad6 appmximanls to the percolation probability series. Entries lo the 
lefl (right) are qe ( p )  eslimates. 

N [ ( N  - ] ) / N I  ININ1 [ ( N  + ] ) / N I  
4 0.29394 0.2688 0.29391 0.2687 0.29427 0.2720 
5 0.29393 0.2688 0.29433 0.2727 0.29430 0.2723 
6 0.29427 0.2719 0.29432 0.2725 0.29427 0.2720 
1 0,29442 a2739 0.29445 0.2745 0.29448 0.2750 
8 0.29451 0.2759 
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Note that there is a general upward trend, and limits around q, = 0.2945 
and p = 0.276 appears entirely attainable. We observe that our estimate for the 
critical threshold is in disagreement with that recently proposed by Ben-Avraham et 
a1 (1991) which has a central value at qc = 0.293478. From table 1 we see that the 
approximants exceed that value from the very beginning. Nevertheless our estimated 
value is completely compatible with qc = 0.294511 f O.ooOOO4 previously proposed 
by Essam et a1 (1988). 

The critical exponent P = 0.276 is in good agreement with that calculated 
for the directed bond percolation on the square lattice (Baxter and Guttmann 
1988) confirming once more that universality holds for both the site and the bond 
formulations of the percolation problem. 

As our values for the critical threshold and critical exponent are less precise than 
the values obtained by F s a m  et a1 (1988) and Baxter and Guttmann (1988) we can 
use their values in order to get refinements. 

Following Gaunt and Guttmann (1974) we wote  down Pad6 approximants to the 
series 

( 4 4  

and the results are shown in table 2. 

"able 2. Pad6 appmximants lo the series (4.1) using qe = 0.294511 

4 0.272929 0.260 376 0.275 017 
5 0.274829 0.275265 0.274598 
6 0.279587 0.275471 0.275 643 
7 0.275610 0.275 790 0.275 789 
8 0.275789 

Now, conversely, we can use a good estimate of p to form Pad6 approximants to 
the series 

to get better estimates of 4,. The results are given in table 3. 

"able 3. Pad6 approximanls lo the series (4.2) using p = 0.2764. 

N [(N- 1)INl  I N I N  I(N+ 1)IN 
5 0.294682 0.294661 0.294 143 
6 0.294710 0.294461 0.293&55 
7 0.294643 0.294562 0.294548 
8 0.294545 0.294 541 

(4.2) 
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5. Summary 

We have calculated an exact series expansion for the percolation probability of the 
directed site percolation problem on the square lattice. This expansion increases 
the known series from order q'" to order q'O. The method used was a transfer- 
matrix method which simultaneously allowed us to establish an interesting wnnection 
between this problem and the combinatorial problem of enumerating the number of 
dissections of a ball. Our approach also permits us to extract series for the mean 
cluster size. Finally, we have given estimates for the critical threshold and the critical 
exponent of the order parameter through an analysis based on Pad6 approximants. 
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