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Abstracl. Using a transfer-matrix technique we obtain extended series expansion of the
percolation probability for the directed site percolation problem on the square lattice.
Qur approach reveals a previously unsuspected connection between this problem and
the enumeration of the number of ways of dissecting a ball. We show that the methed
can also be used to determine a series expansion for the mean cluster size. An analysis
based on Padé approximants gives estimales of the crilical threshold and also of the
critical exponent 8.

1. Introduction

Percolation theory has a fundamental role in the study of geometric phase transitions.
Since it was proposed in its bond (Broadbent and Hammersley 1957) and site (Domb
1959) versions a huge number of techniques have been used in order to increase
cur understanding of the subject, ¢.pg series expansions, Monte Carlo methods,
the transfer-matrix technique and various types of calculations spawned by the
renormalization group theory (Stauffer 1985).

Directed percolation is an anisotropic variant of percolation in which the lattice
is now oriented. Acyclic (cyclic) orientation leads to a different (same) universality
class from undirected percolation (Blease 1977).

Directed percolation has many possible applications and realizations including
crack propagation (Kertész and Vicsek 1980), epidemics with a bias (Grassberger
1985), galactic evolution (Schulman and Seiden 1982) and resistor—diode networks
(Redner and Brown 1981). Moreover, it can also be associated to Reggeon
field theory (Grassberger and Sundermeyer 1978, Cardy and Sugar 1980), collapse
transition for branched polymers (Dhar 1987) and vicious random walkers
(Arrowsmith et af 1991). Recently a number of results have been obtained for directed
percolation regarding, e.g., the fractal dimension at threshold (Hede er al 1991),
Kasteleyn—Fortuin formulae for a chiral Potts model (Arrowsmith and Essam 1990), a
new scaling mechanism for the longitudinal correlation length (Henkel and Privman
1991), conversion site-to-bond method (Duarte 1990), mean-field renormalization
group (Neves and Leal da Silva 1991), transfer-matrix methods (ben-Avraham et af
1991), series techniques (Onody 1990, Ruskin and Cadilhe 1991) and self-organized
criticality (Obukhov 1990).

Focusing our attention on series expansion methods we note that for the pair
connectedness moments (low density expansions) very long series are now available
(Essam et al 1988) for both site and bond percolation on the directed square
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and triangular lattices. However, for the corresponding series expansion of the
percolation probability (high density expansion) the status is not the same and only
for the directed bond percolation some recent improvements were made (Baxter and
Guttmann 1988, Onody 1990). In fact, for the site percolation defined on the directed
square lattice, the longest previously published series has remained the ten-term series
of De’Bell and Essam (1983). In this paper, using a transfer-matrix method, we extend
the known series for the percolation probability to 16 terms.

This paper is organized as follows. In section 2 we present the transfer-matrix
method we have used to get the series expansion of the percolation probability to
order 15. In section 3 we establish a connection between this expansion and the
number of dissections of a ball. This connection allows us to increment the series by
one more term. We also show how the mean cluster size can be obtained using the
same transfer-matrix scheme. A Padé approximant analysis of the series is used in
section 4 to estimate the percolation threshold g, and the critical exponent 3. We
conclude the paper with a short summary.

2. The transfer-matrix method

Consider a square lattice drawn diagonally as in figure 1. Sites are independently
present with probability p and absent with probability ¢ = 1 — p and the edges of the
lattice are oriented as shown in the figure 1 (acyclic orientation).

The order parameter for this system is the percolation probability P(q), ie. the
probability that the origin O belongs to an infinite cluster.

As p approaches its critical value p_ from above, P(p) goes to zero according to
the power law

P(p) ~{p—p.)*? @.1)

where 3 is the critical exponent.

For this quantity the longest existent series was evaluated through the enumeration
of a lattice animal generating program (De’Bell and Essam 1983). We shall use a
transfer-matrix approach that stores information from one tow to the next.

Let us denote an occupied site by 1, an empty site by 0 and one configuration (of
the 2% aliowed) of the N sites living in the row N by {a}y = {o}, 05,...,0n5}
with «; being 0 or 1 and corresponding to the state of occupation of the ith site of
that row. Let P({ca},) be the probability of occurrence of such a configuration.

For the second row we have explicitly P({1,1}) = p?, P({1,0}) = P({0,1}) =
pq and P({0,0}) = O (remember that the origin is always occupied and that the

o}

N25___

Figure 1. Acyclic orientation of the square laltice. The origin is always occupied and
we have labelled the rows as used in the text.
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configuration {0,0} is forbidden since it interrupts the cluster). We store the four
configurations in a 4 x 3 matrix reserving one line for each configuration and with the
columns keeping the coefficients of the corresponding polynomial in the variable g.
Summing over all configurations we have

Pg)= ) P({a}) =1-¢. 22
{a}z

Now using this information retained up to row 2, we can formulate a procedure
that cnable us to get all configurations probabilities P({a};) of row 3. The rules are
the following.

(i) Consider a configuration of row 3, say {1,0,0}.

(ii)) Match this with all compatible configurations of row 2. By a compatible
configuration we mean one configuration of the second row that allows all the
occupied sites of the third row being connected to the origin. In other words, every
occupied site of row 3 must have at least one occupied nearest neighbour at row 2.
This preserves the concept that a site only belongs to the directed cluster if and only
if it is connected to the origin,

(iii) For each compatible configuration of row 2 multiply the corresponding
probability by a factor p™q™ where m is the number of occupied sites and n is the
number of perimeter sites (i.e. alf empty sites of the row 3 with at least one occupied
nearest-neighbour site in row 2) of the third row. Summing over all compatible
configurations,

P({1,0,0}) = p¢*P({1,1}) + pq P({1,0}). (2.3)

(iv) Doing the same thing for all configurations of the third row, we can then
store these probabilities in a matrix 2* x 6 in the same way that we did with the
second row.

It is easy to obtain

Pig)=)Y Pal) =1-q¢" -3 +4¢* - ¢°. 24
{o}s

Proceeding in the same way we can get P({a}y) and Py(q) for N =4,5,....

We wrote a FORTRAN program to execute the rules above up to row N = 15
keeping the polynomials up to order ¢'® (the reason for this will become clear in the
next section). It took 36 CPU hours in our CONVEX.

For a finite lattice of N rows we have

(N-1)(N+2)/2
Pyig)= >, anma™. 2.5)

m =0

For g < g, we expect that
P(q) = lim Py(q}. (2.6)
— 0O

In fact we can take this as a more precise definition of P(q).
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Analysing these polynomials we observe that in going from row N to row
N + 1 leaves the coefficient of 1,q,¢2,...,q" unchanged such that the percolation
probability can be written

Pe)=Pyo= 3 ayng". 2.7)
N=1

In this way, we have the series expansion

P(q) = 1-¢* = 3¢% - 8¢* — 21¢° — 56q° — 154q" — 434¢° — 1252¢° — 3675q"¢
— 10954¢™ — 3304442 — 1006764"% - 309569" - 9574244¢% . .. .
(2.8)

3. Dissections of a ball

Through the analysis of the coefficients a,;,, of (2.6) or, more precisely, through
analysis of the differences (o y41—an41, v41) We have found the following amazing
integer sequence: 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, etc. This sequence is
exactly an enumeration problem of ball dissections! (See Beineke and Pippert 1971,
Sloane 1973.)

The problem of dissections was first formulated by Euler as the number of ways
of dissecting a convex polygon of n 4 2 sides into n triangles. This question leads to
the Catalan numbers C, = (2n)!/n!(n + 1)! (n 2 1). Such numbers have already
appeared in the context of directed bond percolation (Baxter and Guttmann 1988),
Since the boundary of a polygon is homeomorphic to a circle, such a triangulation can
be considered as a dissection of a disc and therefore it is a two-dimensional problem.
The three-dimensional analogue corresponds to dissections of a ball.

Let Dy(n) be the number of ways of inserting n — 4 sheets through a ball having
n vertices on its surface in such a way that each sheet contains precisely three of the
‘vertices and so that pairs of sheets meet only on surface curves joining vertices. This
problem was solved by Beineke and Pippert (1971):

(3n — 9!
(7= 3)1(2n = 5)! @1

Dy(n) =

for n 2 3.
Turning back to our sequence we can identify

= D;(N4+3)= (BN} 3.2
ay N4 =~ Onp N4 = D3(N + )—m. (3.2)

That is the reason we have kept the polynomial Pi5{q) up to order g'%. We have
ay5,6 = 11121767818 and using (3.2) we can find

alﬁ,lﬁ = —2987 846 (3.3)

incrementing the percolation probability by one more term.
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Although we have found the link between the directed site problem and the
dissection problem, we don’t know ijts origin. It would be very interesting if one
could demonstrate (3.2).

To close this section let us show how the method we have developed so far can
also be used to obtain the mean cluster size series Sy (p) (low density series). It
is necessary to incorporate, in each row, its site content. Thus, in a row m, we
multiply each configuration probability P({a},) by the number of occupied sites
of this configuration and sum over all possible configurations to get a partial sum
S(m,p). Up to row N the mean cluster size will be given by

N
Sn(pY =) S(m,p) 3.4

m=1

which gives the correct answer to order p™—! (that is, in going to rows > N the
polynomial coefficients up to order N — 1 will no longer change).
We can easily calculate by hand the first few partial sums. For example

S(1,p) =1 S(2,p) =2p S(3,p) = —-p* +4p* 5(4,p) = —4p*+8p°
giving
S,(p) = 1+ 2p + 4p® + 7p* — 4p° (3.5)

which it is correct to order p.

Although it was amusing to see that our method works equally well for both
low and high density series expansion, our results for the mean cluster size do not
compete with the previous one based on a Dyson-type equation (Essam et al 1988).
Indeed they are very different from these as long as we do not go beyond N = 15,

4. Analysis of series

Order parameter series are usually well suited to analysis by Dlog Padé approximants.
Accordingly, we show in table 1 the standard Dlog Padé approximants for the
percolation probabilities series.

Table 1. Dlog Padé approximanis to the percolation probability series. Entries to the
left (right) are gc (B) estimates.

N [(N-1/N] [N/N] [(N +1)/N]

0.293 94 0.2688 0.29391 0.2687 0.294 27 0.2720
0.29393 0.2688 0.29433 0.2727 0.294 30 0.2723
0.294 27 0.2719 0.294 32 0.2725 0.294 27 0.2720
0.294 42 0.2739 0.29445 0.2745 0.294 48 0.2750
0.294 51 0.2759

- -SR-S ¥
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Note that there is a general upward trend, and limits around g, = 0.2945
and @ = 0.276 appears entirely attainable. We observe that our estimate for the
critical threshold is in disagreement with that recently proposed by Ben-Avraham et
al (1991) which has a central value at g, = 0.293478. From table 1 we see that the
approximants exceed that value from the very beginning. Nevertheless our estimated
value is completely compatible with g, = 0.294511 + 0.000004 previously proposed
by Essam et al (1988).

The critical exponent 8 = 0.276 is in good agreement with that calculated
for the directed bond percolation on the square lattice (Baxter and Guttmann
1988) confirming once more that universality holds for both the site and the bond
formulations of the percolation problem.

As our values for the critical threshold and critical exponent are less precise than
the values obtained by Essam et a/ (1988) and Baxter and Guttmann (1988) we can
use their values in order to get refinements.

Following Gaunt and Guttmann (1974) we wrote down Padé approximants to the
series

dInP(q)

(q_QC) dq

4.1)
and the results are shown in table 2.

Table 2. Padé approximants to the series (4.1) using g = (.294 511,

N [N-1D/N] _[N/N] _[(N+DO/N
4 0272929 0.260376 0275017

5 0.274 829 0275265 0.274 598

] 0.279 587 0.275471 0.275643

7 0.275610 0.275790 0.275789

8 0.275 789

Now, conversely, we can use a good estimate of 3 to form Padé approximants to
the series

[P(q))"? 4.2)

to get better estimates of g, The results are given in table 3.

Table 3. Padé approximants to the series (4.2) using @ == 0.2764.

N [(N-1/N] [N/N] (N +1/N

5 0.294 682 0.294 661 0.294 143
é 0.294 710 0.294 461 (.293 865
7 0.294 643 0.254 562 0.294 548
8 0.294 545 0.294 541
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5, Summary

We have calculated an exact series expansion for the percolation probability of the
directed site percolation problem on the square lattice. This expansion increases
the known series from order ¢!’ to order ¢'S. The method used was a transfer-
matrix method which simultaneously allowed us to establish an interesting connection
between this problem and the combinatorial problem of enumerating the number of
dissections of a ball. Qur approach also permits us to extract series for the mean
cluster size. Finally, we have given estimates for the critical threshold and the critical
exponent of the order parameter through an analysis based on Padé approximants.
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